PEDIATRIC TRACK

DIABETES TECHNOLOGIES

R. Paul Wadwa, MD
Associate Professor of Pediatrics
Barbara Davis Center for Diabetes
University of Colorado Anschutz Medical Campus
Aurora, Colorado

#EPICconf2019
www.EPICconferences.org
DISCLOSURES

Research Support
National Institutes for Health (NIH)
Abbott, Dexcom, Insulet, Medtronic, Tandem, Eli Lilly & Co,
Mannkind

Honorarium/Consulting Fees
Dexcom
Eli Lilly & Co
Medtronic

OUTLINE

- Background
- Currently available technology
 - Glucose Monitoring
 - Insulin Delivery
- Future Developments
 - Glucose Monitoring
 - Insulin Delivery
- Summary
- Questions & Answers
BACKGROUND

#EPICconf2019
www.EPICconferences.org

Progress in Diabetes Care

Discovery of insulin, 1920s
First portable glucose monitors, 1970s
DCCT 1993
Continuous glucose monitoring, 2000s
Artificial Pancreas/HCL

NPH insulin, 1930s
Biologic insulin, 1980s
Rapid-acting/basal insulin, 1990s
Ultra rapid insulin

FUTURE?
ARTIFICIAL PANCREAS
What is an “artificial pancreas?”

3. CGM
1. Insulin Pump
2. Rapid Acting Insulin ± Glucagon

4. Insulin Dosing Algorithm(s)
5. ± Communication Device

#EPICconf2019
www.EPICconferences.org

Why do we need the artificial pancreas?

#EPICconf2019
www.EPICconferences.org
CURRENT T1D CONTROL IN THE UNITED STATES

Despite >20 years of knowledge of the importance of tight control, patients are still poorly controlled.

- Evidence from the Type 1 Diabetes Exchange Registry from 2015 (Miller, Diabetes Care).
- Average A1c by age group is too high everywhere and much too high in adolescents.

SEVERE HYPOGLYCEMIA AND A1C

- DCCT (intensive therapy):
 62 per 100 pt-ys
 A1C (6.5 yr): 9.0% → 7.2%

- JDRF CGM (adults, 1 subject excluded):
 20.0 per 100 pt-ys
 A1C (6 mo): 7.5% → 7.1%

- STAR 3 SAP (all ages):
 13.3 per 100 pt-ys
 A1C (1 yr): 8.3% → 7.5%

- T1D Exchange (US data)

Garg et al. ATTD. Barcelona 2012.
BURDEN V BENEFIT

CURRENTLY AVAILABLE TECHNOLOGY

- Glucose Monitoring
- Insulin Delivery/ Artificial Pancreas
CURRENTLY AVAILABLE TECHNOLOGY

- Glucose Monitoring

GLUCOSE MONITORING

Progress over the last 50 years
- Urine glucose
- Fingerstick blood glucose
 - Improvements in accuracy and technique
 - Limitations: fingersticks, frequency, rate of change
- Interstitial fluid monitoring
 - Continuous glucose monitoring (CGM)
 - Flash glucose
CONTINUOUS GLUCOSE MONITORS

- Continuous Glucose Monitors provide increasingly accurate real-time glucose values to assist with diabetes decision making.

- Sample interstitial fluid glucose and give filtered blood glucose value which is generally within 8-12% of the serum glucose with an 4-10 minute lag-time.

CONTINUOUS GLUCOSE MONITORS

- Studies show CGM use lowers HbA1c by 0.5% with decreased hypoglycemia.

- Greater benefit seen in people who wear the sensor 6 or more days per week.

- Early CGM Studies showed overall use is only about 10% of pediatric patients with high rates of discontinuation (~40% within 1 year).

- More recent (2017) evidence shows rates of use at 50% among younger children and older adults with rates around 20% among adolescents.
CURRENTLY AVAILABLE TECHNOLOGY

- Medtronic Guardian Connect
 - Approved for age 14 years and over
 - Requires Apple device (iPhone)
 - Sensor: 7-day use, calibration 2/day
 - Allows sharing
 - Sugar IQ app – identifies trends

CURRENTLY AVAILABLE TECHNOLOGY

- Dexcom G6
 - FDA approved for pediatric & adult use in 2018
 - Factory calibration
 - 10-day use
 - Receiver or phone/ watch display
 - Share/follow apps
 - Integration with Tandem pump

#EPICconf2019
www.EPICconferences.org
CURRENTLY AVAILABLE TECHNOLOGY

- Abbott Freestyle Libre
- “flash” glucose monitoring
- No calibration
- Up to 14-day use
- No high/low alarms

NOT APPROVED FOR PEDIATRIC USE (under age 18 yrs)

#EPICconf2019
www.EPICconferences.org

CURRENTLY AVAILABLE TECHNOLOGY

NOT APPROVED FOR PEDIATRIC USE (under age 18 yrs)

- Senseonics Eversense
 - Requires in-office procedure to implant sensor
 - 3-month sensor
 - Requires calibration (2/day)
 - High/low alarms on phone, vibration of sensor
 - Removable transmitter

#EPICconf2019
www.EPICconferences.org
CURRENTLY AVAILABLE TECHNOLOGY

- Insulin Delivery

#EPICconf2019
www.EPICconferences.org

INSULIN DELIVERY

MiniMed™ 670G insulin pump with SmartGuard™ technology.

Guardian™ Sensor 3 glucose sensor and Guardian™ Link 3 transmitter.

CONTOUR®NEXT LINK blood glucose meter for calibrations.
MEDTRONIC 670G: MODES

- Manual mode
- Pump mode
- Sensor Augmented Pump
- Hybrid Closed Loop/Auto mode

#EPICconf2019
www.EPICconferences.org

INSULIN DELIVERY

- Tandem t:slim X2 with BASAL IQ
- Use with Dexcom G6 CGM
- Predicted low glucose suspend
- Decreases risk for hypoglycemia

#EPICconf2019
www.EPICconferences.org
INSULIN DELIVERY

- Omnipod (Insulet)
 - DASH rolling out in 2019
 - (selected areas/ insurance coverage)
 - Bluetooth enabled, wifi-compatible
 - Calorie King database
 - Display/ View apps to share info
 - iPhone widget allows CGM and pump views

#EPICconf2019
www.EPICconferences.org

INSULIN DELIVERY

- InPen (Companion Medical)
 - Bluetooth enabled pen
 - Phone app with “smart diabetes management tool”
 - Dose calculator for injections
 - Reports with data not found in meter alone

#EPICconf2019
www.EPICconferences.org
Future Developments

• Glucose Monitoring
• Insulin Delivery

• WARNING! NOT FDA APPROVED FOR USE
• ALL INFORMATION PRESENTED IS PUBLICLY AVAILABLE

#EPICconf2019
www.EPICconferences.org

Future Developments

• Glucose Monitoring
 • Studies in progress for pediatric use of Freestyle Libre
 • Next generation CGM from Dexcom, Medtronic
 • Increased interaction with “apps”

#EPICconf2019
www.EPICconferences.org
Future Developments

- Control IQ
 - Tandem X2, Dexcom G6
 - U Virginia/Kovatchev algorithm
 - Trials at 7 sites completed spring 2019 (including BDC)

#EPICconf2019
www.EPICconferences.org

Future Developments

- Medtronic
 - Bluetooth
 - 670G for age 2-6 yrs submitted for FDA review
 - Advanced Hybrid Closed Loop (integrate new algorithm)

#EPICconf2019
www.EPICconferences.org
Future Developments

- Omnipod Horizon
 - Trials in progress for hybrid closed loop
 - MPC algorithm

Future Developments

- Bionic Pancreas bihormonal systems
- Trials in progress
 - Pilot at BDC in summer 2018 - insulin only Gen 3 iLet
 - Plans for future insulin only, bihormonal (insulin/glucagon) trials

https://www.betabionics.com/

#EPICconf2019
www.EPICconferences.org
Future Developments

- **Tidepool Loop**
 - Loop algorithm
 - Partnership with Tidepool, Insulet
 - Under development

Future Developments

- **Other Systems**
 - Several academic groups working on algorithms
 - Insulin only
 - Bihormonal systems
SUMMARY

Diabetes control in general remains suboptimal for most pediatric and adult patients
New diabetes technology offers hope!
More developments coming
• With research, better tools are on the way!
• Future technology will reduce burden and increase benefit

ACKNOWLEDGEMENTS

Investigators
• R. Paul Wadwa, MD
• Robert Slover, MD
• Greg Fortenza, MD
• G. Todd Alonso, MD
• Kim Driscoll, PhD
• Laurel Messer, RN, CDE, MPH

Research Team
• Cari Berget, RN, CDE
• Emily Jost, RD, CDE, MPH
• Samantha Lange, RN, CDE
• Maria Alex Rossick-Solis
• Emily Boranian, RN
• Lindsey Towers
• Alex Coakley
• Estella Escobar