SESSION 3 PEDIATRIC SESSION

INSULIN RESISTANCE AND WEIGHT

Lauren Waterman, MD
Assistant Professor
Barbara Davis Center for Diabetes
University of Colorado Anschutz Medical Campus

#EPICconf2025

CONFLICTS OF INTEREST

I have no conflicts of interest related to this presentation

#EPICconf2025

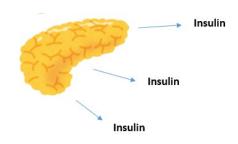
OUTLINE

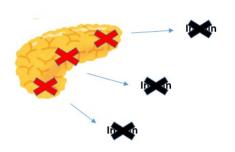
- Review the different types of diabetes
- •How and why insulin resistance affects your body and blood sugars
- Review reasons for insulin resistance
- Discuss consequences of insulin resistance
- Review methods to treat insulin resistance
 - Lifestyle changes
 - •GLP1 Agonists
 - Others

#EPICconf2025

INSULIN: A BRIEF REFRESHER

- An important hormone made by the beta cells of the pancreas
- Insulin allows blood sugar to enter the body's cells and be used as energy
- Helps also build proteins and other parts of the body
- Extra blood sugar is then stored as adipose (fat) cells,
 which the body can use as energy later
- Without enough insulin, high blood sugars (hyperglycemia and diabetes can occur)


#EPICconf2025



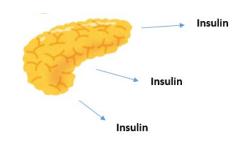
DIFFERENTIATING DIABETES

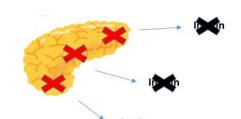
TYPE 1 DIABETES

- Insulin Deficiency
- Destruction of insulin producing cells of the pancreas by body's own antibodies
- Leads to an overall lack of insulin
- Body is unable to maintain normal blood sugars and prevent formation of an acid (ketones) in the body
- Treatment is insulin

TYPE 2 DIABETES

- Insulin Resistance
- Body does not react as much to its own insulin, leading to higher blood sugars
- If blood sugars not controlled, pancreas can eventually "burn out" and stop producing enough insulin
- Treatments include lifestyle changes, oral medications, GLP1 injections, and insulin


#EPICconf2025



DIFFERENTIATING DIABETES

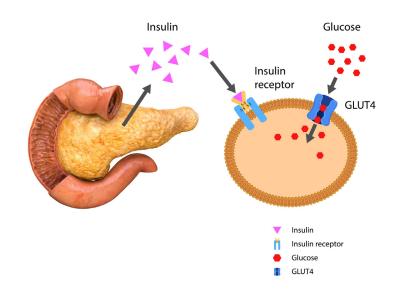
TYPE 1 DIABETES

- Insulin Deficiency
- Destruction of insulin producing cells of the pancreas by body's own antibodies
- Leads to an overall lack of insulin
- Body is unable to maintain normal blood sugars and prevent formation of an acid (ketones) in the body
- Treatment is insulin

"Double Diabetes" or Type 1.5 Diabetes

TYPE 2 DIABETES

- Insulin Resistance
- Body does not react as much to its own insulin, leading to higher blood sugars
- If blood sugars not controlled, pancreas can eventually "burn out" and stop producing enough insulin
- Treatments include lifestyle hanges, oral medications, GLP1 stions, and insulin

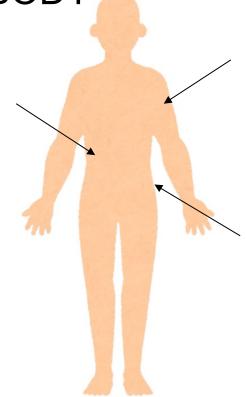


#EPICconf2025

INSULIN RESISTANCE: WHAT IS IT?

- •Insulin does not have as much of an effect on the body
- •Can happen with insulins made by the person's own body or to what is given through a pump or shot
- •If the body stops reacting as strongly to the insulin:
 - •Not as much glucose enters the cell
 - •Glucose can build up in the blood stream
 - •Ketones can begin to form when they should not, leading to acidosis
- •The amount of insulin the body sees has to be increased

Normal Process



#EPICconf2025

HOW INSULIN RESISTANCE IMPACTS THE BODY

- Main areas of resistance:
 - 1. Skeletal muscles
 - 2. Liver
 - 3. Adipose (fat) tissue
- Resistance eventually leads to:
 - 1. Higher sugars since the liver is not suppressed from making more glucose
 - 2. More free fatty acids, increasing the resistance
 - 3. Increased fat storage
 - Intra-abdominal ("central obesity")
 - In muscles
 - Liver
 - Blood vessels

#EPICconf2025

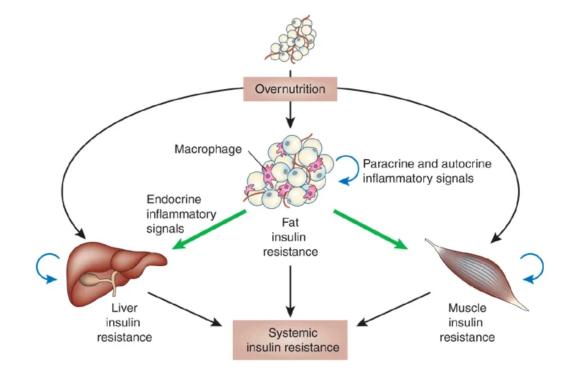
CAUSES OF INSULIN RESISTANCE

- 1. Puberty*
- 2. Obesity*
- 3. Pregnancy
- 4. Lipodystrophy
- 5. Stress
- 6. Medications (steroids, certain depression/anxiety medications)
- 7. Other rarer causes

#EPICconf2025

PUBERTY AND INSULIN RESISTANCE

- •Time of significant change in a person's life, including their resistance to insulin
- •Relative insulin resistance of puberty first noticed in the 1980s
- •Reasons:
 - Large number of hormonal changes during this time
 - •Growth hormone, particularly in the very early morning hours
 - •Sex steroids (estrogen and testosterone) and androgens
 - •Changes in body composition, particularly fat mass
 - Changes in cholesterol levels
- Sensitivity generally returns to normal following the end of puberty
- •Obese youth are more insulin resistant going into puberty and sensitivity does not always recover at the end



#EPICconf2025

OBESITY AND INSULIN RESISTANCE

- •Higher amounts of central obesity lead to extra resistance:
 - •Inflammation:
 - Cytokines from macrophages
 - Inflammatory proteins
 - •Overproduction of some hormones that work against insulin
 - More free fatty acid production from lipolysis
- •Can be difficult to navigate as insulin itself can lead to weight gain

#EPICconf2025

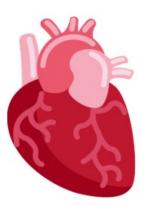
METABOLIC SYNDROME

- •Otherwise known as: Syndrome X, insulin resistance syndrome, obesity dyslipidemia syndrome
- •Diagnostic criteria has changed over the years
 - •At least 3:
 - Abdominal obesity
 - •High serum triglycerides
 - Low HDL cholesterol ("good cholesterol")
 - High blood pressure
 - High fasting blood sugars
- •More common in adults but occurring more frequently in children and teens

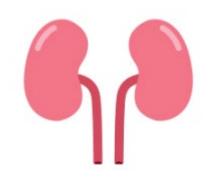
#EPICconf2025

DOUBLE DIABETES OR INSULIN RESISTANCE IN T1D

- •Can be much more difficult to make the diagnosis of metabolic syndrome in these individuals
- Possible factors leading to increased IR:
 - Family history of T2D
 - Weight gain from insulin therapy
 - •Maladaptive eating pattern, especially around lows
 - Chronic hyperglycemia leading o glucotoxicity
 - Insulin therapy itself
 - •Peripheral hyperinsulinemia and hepatic hypoinsulinemia
 - •Changes in expression of the insulin receptors in peripheral tissues
- •Presence of IR still associated with worse long term outcomes

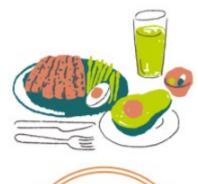


#EPICconf2025



CONSEQUENCES OF INSULIN RESISTANCE

- Worsening glycemic outcomes and complications
- Cardiovascular disease
- Kidney disease
- Skin findings
- Polycystic ovary syndrome (PCOS)
- Liver disease
- Obesity-related cancers (endometrial cancer)



#EPICconf2025

TREATMENT OF INSULIN RESISTANCE

#EPICconf2025

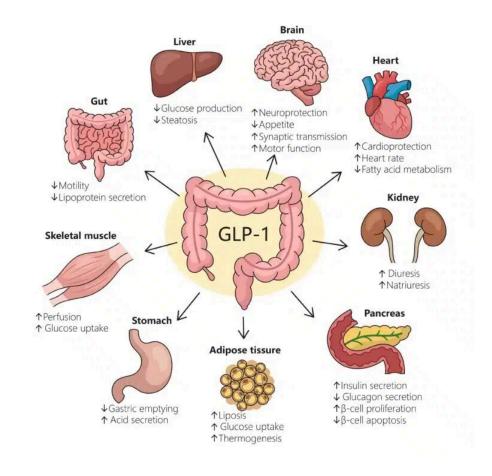
LIFESTYLE CHANGES

- Primary goal is weight reduction
 - Even losing 5-10% of body weight can make a huge difference in insulin sensitivity
- Dietary changes
 - Unclear the best for weight loss (Mediterranean, DASH, etc)
 - Generally balanced diet (high protein, low fat) and limited processed food
- Physical Activity
 - Combination of aerobic and resistance trainings, totaling 150 minutes per week
 - Improves blood sugars in general
 - Muscles can use glucose in a way separate from insulin
 - Improved insulin liver sensitivity
 - Works best alongside dietary changes
 - Helps improve other parts of person's health (blood pressure, cholesterol levels)

#EPICconf2025

METFORMIN

- Oral medication used to treat type 2 diabetes, pre-diabetes, PCOS, and obesity
- Mechanisms:
 - Stops the liver from making its own glucose
 - Increase glucose uptake by insulin in peripheral tissues through a different pathway
- In Type 1 Diabetes:
 - Research showed some weight reduction and decreased in total daily dose
 - Not sustained in the long-term and no improvement in glycemic control
 - Possible use to manage cardiovascular risk or improve sensitivity for those with IR



#EPICconf2025

GLUCAGON-LIKE PEPTIDE 1 (GLP1)

- Important hormone made by the small intestine and colon
- Impacts multiple areas of the body to help regulate blood sugars
- Serves 3 main functions:
 - 1. Stimulates your pancreas to release more insulin in response to a meal
 - 2. Slows down your gut to stop the blood sugar from rising as quickly
 - 3. Acts on the brain to reduce your appetite
- Naturally made GLP1 lasts only for minutes

#EPICconf2025

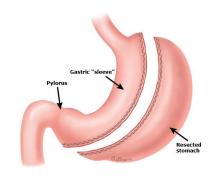
GLP1 AGONISTS

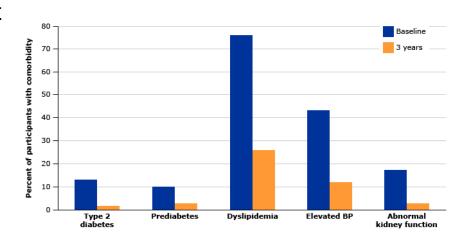
- Synthetic form of the naturally made GLP1
- Indicated to treat type 2 diabetes and to help with weight loss
- Daily:
 - Liraglutide (Victoza, Saxenda)
- Weekly:
 - Tirzepatide (Mounjaro, Zepbound
 - Semaglutide (Ozempic, Wegovy)
 - Dulaglutide (Trulicity)
 - Exenatide ER (Bydureon)
- Doses are started low and slowly increased over the next few weeks to months to the highest tolerated dose
- Often significant improvements in hemoglobin A1c and weight reduction

#EPICconf2025

GLP1 AGONISTS: SIDE EFFECTS

- Gastrointestinal: Nausea, vomiting, diarrhea
 - Occur quite frequently
 - Attempt some dietary changes (smaller, less fatty meals, increased water intake)
 - Can be significant and can lead to discontinuation by patients
 - Can be difficult to navigate for someone with type 1 diabetes due to ketone development
- Pancreatitis
- Hypersensitivity/allergic reactions
- Weight loss often not maintained once medication is stopped




#EPICconf2025

OTHER OPTIONS

- Bariatric Surgery
 - Similar outcomes and weight reduction to GLP1
 - Sleeve gastrectomy (most common in adolescents)
 - Roux-en-Y gastric bypass (higher risk of nutritional deficiencies)
 - Long-term weight loss but generally immediate improvement in glucoses
- Other medications for weight loss (Phentermine, Topiramate):
 - More complicated to navigate around diabetes, especially type 1
- Type 2 Diabetes medications (SGLT2 inhibitors):
 - Not approved for people with T1D but may be promising
 - Decreases glucoses by causing kidneys to pee out more
 - Improves heart and kidney outcomes for those with T2D
 - Increased risk of DKA for those with T1D

#EPICconf2025

CONCLUSIONS

- Insulin resistance is increasingly common, including in those with type 1 diabetes
- Insulin resistance can lead to higher insulin requirements, higher blood sugars, and more long term health consequences
- Multiple factors can lead to insulin resistance, with obesity being a primary driver
- Main treatment is lifestyle changes
- Some promise for medications like GLP1, though therapy is likely life-long